Bradykinin potentiation by angiotensin-(1-7) and ACE inhibitors correlates with ACE C- and N-domain blockade.
نویسندگان
چکیده
ACE inhibitors block B(2) receptor desensitization, thereby potentiating bradykinin beyond blocking its hydrolysis. Angiotensin (Ang)-(1-7) also acts as an ACE inhibitor and, in addition, may stimulate bradykinin release via angiotensin II type 2 receptors. In this study we compared the bradykinin-potentiating effects of Ang-(1-7), quinaprilat, and captopril. Porcine coronary arteries, obtained from 32 pigs, were mounted in organ baths, preconstricted with prostaglandin F(2alpha), and exposed to quinaprilat, captopril, Ang-(1-7), and/or bradykinin. Bradykinin induced complete relaxation (pEC(50)=8.11+/-0.07, mean+/-SEM), whereas quinaprilat, captopril, and Ang-(1-7) alone were without effect. Quinaprilat shifted the bradykinin curve to the left in a biphasic manner: a 5-fold shift at concentrations that specifically block the C-domain (0.1 to 1 nmol/L) and a 10-fold shift at concentrations that block both domains. Captopril and Ang-(1-7) monophasically shifted the bradykinin curve to the left, by a factor of 10 and 5, respectively. A 5-fold shift was also observed when Ang-(1-7) was combined with 0.1 nmol/L quinaprilat. Repeated exposure of porcine coronary arteries to 0.1 micromol/L bradykinin induced B(2) receptor desensitization. The addition of 10 micromol/L quinaprilat or Ang-(1-7) to the bath, at a time when bradykinin alone was no longer able to induce relaxation, fully restored the relaxant effects of bradykinin. Angiotensin II type 1 or 2 receptor blockade did not affect any of the observed effects of Ang-(1-7). In conclusion, Ang-(1-7), like quinaprilat and captopril, potentiates bradykinin by acting as an ACE inhibitor. Bradykinin potentiation is maximal when both the ACE C- and N-terminal domains are inhibited. The inhibitory effects of Ang-(1-7) are limited to the ACE C-domain, raising the possibility that Ang-(1-7) synergistically increases the blood pressure-lowering effects of N-domain-specific ACE inhibitors.
منابع مشابه
N-domain-specific substrate and C-domain inhibitors of angiotensin-converting enzyme: angiotensin-(1-7) and keto-ACE.
We used the isolated N- and C-domains of the angiotensin 1-converting enzyme (N-ACE and C-ACE; ACE; kininase II) to investigate the hydrolysis of the active 1-7 derivative of angiotensin (Ang) II and inhibition by 5-S-5-benzamido-4-oxo-6-phenylhexanoyl-L-proline (keto-ACE). Ang-(1-7) is both a substrate and an inhibitor; it is cleaved by N-ACE at approximately one half the rate of bradykinin bu...
متن کاملPotentiation of bradykinin by angiotensin-(1-7) on arterioles of spontaneously hypertensive rats studied in vivo.
In the present study, we investigated the potentiating effect of angiotensin-(1-7) [Ang-(1-7)] on bradykinin (BK)-induced vasodilation in the mesenteric vascular bed of anesthetized spontaneously hypertensive rats using intravital microscopy. Topical application of BK and Ang-(1-7) induced vasodilation in mesenteric arterioles. The BK-induced effect, but not acetylcholine, sodium nitroprusside,...
متن کاملBradykinin, angiotensin-(1-7), and ACE inhibitors: how do they interact?
The beneficial effect of ACE inhibitors in hypertension and heart failure may relate, at least in part, to their capacity to interfere with bradykinin metabolism. In addition, recent studies have provided evidence for bradykinin-potentiating effects of ACE inhibitors that are independent of bradykinin hydrolysis, i.e. ACE-bradykinin type 2 (B(2)) receptor 'cross-talk', resulting in B(2) recepto...
متن کاملBlockade of bradykinin B2 receptors prevents the increase in capillary density induced by chronic angiotensin-converting enzyme inhibitor treatment in stroke-prone spontaneously hypertensive rats.
We investigated the mechanism of action of the ACE inhibitor-induced increase in cardiac capillary length density. Stroke-prone spontaneously hypertensive rats were treated prenatally and up to the age of 20 weeks with the ACE inhibitor ramipril (0.01 and 1 mg/kg per day PO) and the AT1 receptor antagonist losartan (30 mg/kg per day PO). The contribution of endogenous bradykinin potentiation to...
متن کاملRepression of angiotensin II and potentiation of bradykinin contribute to the synergistic effects of dual metalloprotease inhibition in heart failure.
Neutral endopeptidase inhibition (NEP-I) and angiotensin converting enzyme inhibition (ACE-I) act synergistically to produce acute beneficial hemodynamic effects in models of heart failure. Blockade of the formation of angiotensin II (Ang II) acting together with potentiation of the natriuretic peptides, bradykinin and other vasoactive peptides may mediate the interaction of dual enzyme inhibit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 38 1 شماره
صفحات -
تاریخ انتشار 2001